Brief introduction to deep reinforcement learning

Vincent Francois-Lavet

October 26th, 2018

1/40

Outline

Motivation for reinforcement learning

Techniques used in deep reinforcement learning
Value-based methods
Policy-based methods
Model-based methods

Combining model-based and model-free via abstract
representations

Discussion of another parallel with neurosciences
How to discount deep RL

Conclusions

2/40

Motivation for _reinforcement
learning

3/40

Machine learning relates to the capability of computers to learn
from examples without following explicitly defined rules.

Three types of machine learning tasks can be described.

» Supervised learning is the task of inferring a classification or
regression from labeled training data.

» Unsupervised learning is the task used to draw inferences from
datasets consisting of input data without labeled responses.

» Reinforcement learning (RL) is the task concerned with how
software agents ought to take actions in an environment in
order to achieve some objectives.

4/40

Motivation

F1GURE — Example of an ATARI game : Seaquest

5/40

Motivation

6/40

Motivation

FIGURE — Application in robotics (credits : Jan Peters'team, Darmstadt)

7/40

Objective

From experience in an environment,
an artificial agent
should be able to learn a sequential decision making task
in order to achieve goals.

—[Agent)

at W41 re

A

St = St+1

§
[Environment
L

8/40

Objective

From experience in an environment,
an artificial agent
should be able to learn a sequential decision making task
in order to achieve goals.

N

A

Agent

at W41 re

Environment
St — St41

transitions
are usually
stochastic

8/40

Objective

From experience in an environment,
an artificial agent
should be able to learn a sequential decision making task
in order to achieve goals.

N

Agent

A

Environment
St — St+1

at Wt+1 re

Observations and
actions may be
high dimensional

8/40

Objective

From experience in an environment,
an artificial agent
should be able to learn a sequential decision making task
in order to achieve goals.

N

Agent

<

Environment
St — St+1

at Wt41 re

Observations may not
provide full knowledge
of the underlying
state : wy # St

8/40

Objective

From experience in an environment,
an artificial agent
should be able to learn a sequential decision making task
in order to achieve goals.

N

Agent

A

Environment
St — St+1

at W41 re

Experience may be constrained
(e.g., not access to an accu-
rate simulator or limited data)

8/40

Introduction

» Experience is gathered in the form of sequences of
observations w € €2, actions a € 4 and rewards r € R :

wo, g, oy +--y dt—1, Fre—1, Wt

» In a fully observable environment, the state of the system
st € S is available to the agent.

St = Wt

9/40

Definition of an MDP

An MDP is a 5-tuple (S, A, T, R,~) where :

» S is a finite set of states {1,..., Ns},
» A is a finite set of actions {1,..., N4},
> T:8xAxS8 —[0,1] is the transition function (set of conditional

transition probabilities between states),

> R:S8xAxS — R is the reward function, where R is a continuous set
of possible rewards in a range Rmax € RY (e.g., [0, Rmax]),

» ~ €[0,1) is the discount factor.
Transition Transition
function function
T (s0, a0, 51) T(s1,a1,52)

Reward
Policy function

R(s1, a1, %)

Reward
Policy function

R(s0, a0, 51)

10/40

Performance evaluation

In an MDP (S, A, T, R,~), the expected return V7(s): S = R (7 € I,
e.g., S = A) is defined such that

VT(s)=E [ZOO ’kat+k | st =s, 77}) (1)

k=0

with v € [0, 1).

From the definition of the expected return, the optimal expected return
can be defined as

V*(s) = max V7™ (s). (2)

and the optimal policy can be defined as :

7 (s) = argmax V™ (s). (3)
mell

11/40

Overview of deep RL
In general, an RL agent may include one or more of the following
components :

P> a representation of a value function that provides a prediction
of how good is each state or each couple state/action,

> a direct representation of the policy 7(s) or (s, a), or

» a model of the environment in conjunction with a planning
algorithm.

Model-based
RL

Experience

Modef

RL Value/policy

Model
learning

Acting

Value-based Policy-based
RL RL

Planning

Deep learning has brought its generalization capabilities to RL.
12/40

Techniques used in deep
reinforcement learning

13/40

Value-based methods

14/40

Value based methods : Q-learning

In addition to the V-value function, the Q-value function
Q™(s,a) : S x A — R is defined as follows :

w _ * _k _ —
Q (5’2)_E[Zk207 fevk | St =s,ar =a,m| . (4)
The particularity of the Q-value function as compared to the
V-value function is that the optimal policy can be obtained directly
from Q*(s, a) :

m*(s) = argmax Q*(s, a). (5)
acA

15/40

Value-based method : Q-learning with one entry for every
state-action pair

In order to learn the optimal Q-value function, the Q-learning
algorithm makes use of the Bellman equation for the Q-value
function whose unique solution is Q*(s, a) :

Q"(s,a) = (BQ")(s; a), (6)

where B is the Bellman operator mapping any function
K : S x A — R into another function S x A — R and is defined
as follows :

(BK)(s,a) = > _ T(s,as) (R(s, a,s') +ymax K(s, a’)> . (7)

a'eA
s'eS

16/40

Value-based method

i=2

: Q-learning (dynamic programming)

Value function

V = max, Q(s,a)

Resulting policy
m = argmax, Q(s, a)

oo | r=t
DD REEE
TDDREEE
0 |09 +| -|r=1
0| o0 o9 Flp T
TDDREEE
.00..810.9 <—[—>L;
0| o o8 $lb T

F1GURE — Grid-world MDP with v = 0.9

17/40

Value-based method : Q-learning

In the tabular case :

Initialize Q(s,a) arbitrarily

Repeat (for each episode):
Initialize s

Repeat (for each step of episode):

Choose a from s using policy derived from Q (e.g., e-greedy)
Take action a, observe r, s’

s +— &'

Q(s.a) — Q(s.a) + a[r + ymaxy Q(s',a’) — Q(s,a)]
until s is terminal

18/40

Q-learning with function approximator

To deal with continuous state and/or action space, we can
represent value function with function approximators and
parameters 0 :

Q(s,a;0) =~ Q(s, a)
The parameters 6 are updated such that :
— d . Q\?
0:=0+a— (Q(s,a,e) — v,)
with
Yo=r+q max Q(s', 3" 0)-

With deep learning, the update usually uses a mini-batch (e.g., 32
elements) of tuples < s,a,r, s’ >.

19/40

DQN algorithm
For Deep Q-Learning, we can represent value function by deep
Q-network with weights 6 (instabilities!). In the DQN algorithm :
» Replay memory
> Target network

S1y e e+ s SNpgpiay? L+ + + 3 ANyt

S1+1s -+ + 5 SNpepfay+1 F
Environment

re +ymax(Q(se+1, ;0))
a'eA

Update
Q(s, a; 0k)

FIGURE — Sketch of the DQN algorithm. Q(s, a; f) is initialized to random
values (close to 0) everywhere on its domain and the replay memory is initially
empty ; the target Q-network parameters ¢, are only updated every C
iterations with the Q-network parameters 6 and are held fixed between
updates; the update uses a mini-batch (e.g., 32 elements) of tuples

< 's,a, r,s’ > taken randomly in the replay memory.

20/40

Policy-based methods

21/40

Policy-based methods

» Parametrized policies [1 = {m,, : w € R"}.

» Policy search or gradient ascent on V™ to improve the policy.

> They are able to work with continuous action spaces. This is
particularly interesting in applications such as robotics where
forces and torques can take a continuum of values.

» They can represent stochastic policies : 7 : S x A — P. It is
useful for building policies that can explicitly explore, and this
is also useful in multi-agent systems (e.g., poker) where the
Nash equilibrium is a stochastic policy.

22/40

Model-based methods

Model-based methods

The respective strengths of the model-free versus model-based
approaches depend on different factors.
> If the agent does not have access to a generative model of the
environment, the learned model will have some inaccuracies.
» Second, a model-based approach requires working in
conjunction with a planning algorithm, which is often
computationally demanding.
» Third, for some tasks, the model of the environment may be
learned more efficiently due to the particular structure of the
task.

24/40

Model-based methods

Vi(s) =]
St
de, I't
St+1
mn 0y
11\ * [
11\) 1\
oy R t+1, Mt+1
Iy r=n '
oy R
St+2
n N
1 \\
* 11\ \
™ oy
AR !
/
1

\
. e

FIGURE — lllustration of model-based.

25/40

Overview

__Controllers
e train/validation

and test phases

o hyper-parameters

management

Function Learning
Approximators algorithms

Policies
Exploration/Exploitation
(e.g., via e-greedy)

Replay memory

[P,

1
1
I ENVIRONMENT
1
1

Implementation : https ://github.com/VinF /deer

26/40

Formalization

The learning algorithm can be seen as a mapping a dataset Ds into
a policy mp, (independently of whether the policy comes from a
model-based or a model-free approach) :

Ds — TD;-

In an MDP, the suboptimality of the expected return can be
decomposed as follows :

DSIEDS[VW* (S) — V7Ds (S)] = (VW* (5) — V/™Ds 00 (S))

asymptotic bias

+ E (Ve (s) = V() | (8)

error due to finite size of the dataset Ds
referred to as overfitting

27/40

How to obtain the best policy ?

We can optimize the bias-overfitting tradeoff thanks to the
following elements :

> the state representation,

> the objective function (e.g., reward shaping, tuning the
training discount factor) and

» the learning algorithm (type of function approximator and
model-free vs model-based).

And of course, if possible :

» improve the dataset (exploration/exploitation dilemma in an
online setting)

28/40

Combining model-based and

model-free via abstract
representations

29/40

In cognitive science, there is a dichotomy between two modes of
thoughts (D. Kahneman. (2011). Thinking, Fast and Slow) :

» a "System 1" that is fast and instinctive and

» a "System 2" that is slower and more logical.

FIGURE — System 1 FIGURE — System 2

In deep reinforcement, a similar dichotomy can be observed when
we consider the model-free and the model-based approaches.

30/40

Combining model-based and model-free

Learning everything through one abstract representation has the
following advantages :

» it ensures that the features inferred in the abstract state
provide good generalization;

» it enables computationally efficient planning;
> it facilitates interpretation of the decisions taken by the agent;

P it allows developing new exploration strategies;

31/40

Combined Reinforcement via Abstract Representations
(CRAR)

encoder

encoder

reward reward
model model
transitiol transitiol
model model
model-based model-based

F1GURE — lllustration of the integration of model-based and model-free
RL in the CRAR architecture, with a low-dimensional abstract state over
which transitions and rewards are modeled.

The value function and the model are trained using off-policy data
in the form of tuples (s, a, r,7,s’) via the abstract representation.

32/40

Another important challenge : transfer learning

FI1GURE — Transfer learning between different renderings. Picture from
"Playing for Data : Ground Truth from Computer Games”, Richter, S.
and Vineet, V., et al

33/40

Transfer learning with the CRAR agent

environment

encoder encoder

reward reward
model model
tra nsiti01 transiti01
model model
model-based model-based

FIGURE — lllustration of the integration of model-based and model-free
RL in the CRAR architecture, with a low-dimensional abstract state over
which transitions and rewards are modeled.

34/40

Discussion of another parallel with
neurosciences

35/40

How to discount deep RL

36/40

Motivations

Effect of the discount factor in an online setting.

» Empirical studies of cognitive mechanisms in delay of
gratification : The capacity to wait longer for the preferred
rewards seems to develop markedly only at about ages 3-4
(“marshmallow experiment”).

37/40

Increasing discount factor (using the DQN aglorithm)

40- . . . — - - -
16000}-| e—e Score © P — T '
[X 16000 | e—e Score
35- Discount factor Discount factor
100 35 1.00
140001 \Y 14000 v I
30t 30
12000 L
loso 12000 Jo.9s
25 = 25 s
10000 S 10000 £
© £ @ 0985
Ls Jo9s= = 2015 10.98 £
=20 § 8000 § & 8000 §
b 2
a 15 a
B 6000} los7 6000 Joo7
10 L
10t 4000 4000
{0.96
096 st 2000]
5- 2000
0 7005
ol h . . - . . s 80 05 To 15 20 25 30 35 40 a5
80 05 10 15 20 25 30 35 40 43 Learning steps
Learning steps

F1GURE — lllustration for the game g-bert of a discount factor v held fixed on
the right and an adaptive discount factor on the right.

38/40

Further ressources

» Sutton, Richard S., and Andrew G. Barto. Reinforcement
learning : An introduction. Vol. 1. No. 1. Cambridge : MIT
press, 1998.

» RL Course by David Silver on Youtube :
https ://www.youtube.com/watch ?v=2pWv7GOvuf0

39/40

Conclusions

40/40

Summary of the talk

» Introduction to reinforcement learning and deep reinforcement
learning

» Why combining model-free and model-based approaches

» Brief discussion on some relations to neuroscience

41/40

Questions ?

	Motivation for reinforcement learning
	Techniques used in deep reinforcement learning
	Value-based methods
	Policy-based methods
	Model-based methods

	Combining model-based and model-free via abstract representations
	Discussion of another parallel with neurosciences
	How to discount deep RL

	Conclusions

