
Brief introduction to deep reinforcement learning

Vincent François-Lavet

October 26th, 2018

1/40



Outline

Motivation for reinforcement learning

Techniques used in deep reinforcement learning
Value-based methods
Policy-based methods
Model-based methods

Combining model-based and model-free via abstract
representations

Discussion of another parallel with neurosciences
How to discount deep RL

Conclusions

2/40



Motivation for reinforcement
learning

3/40



Machine learning relates to the capability of computers to learn
from examples without following explicitly defined rules.

Three types of machine learning tasks can be described.

I Supervised learning is the task of inferring a classification or
regression from labeled training data.

I Unsupervised learning is the task used to draw inferences from
datasets consisting of input data without labeled responses.

I Reinforcement learning (RL) is the task concerned with how
software agents ought to take actions in an environment in
order to achieve some objectives.

4/40



Motivation

Figure – Example of an ATARI game : Seaquest

5/40



Motivation

6/40



Motivation

Figure – Application in robotics (credits : Jan Peters’team, Darmstadt)

7/40



Objective

From experience in an environment,
an artificial agent

should be able to learn a sequential decision making task
in order to achieve goals.

Agent

Environment
st → st+1

at ωt+1 rt

transitions
are usually
stochastic

Environment
st → st+1

Observations and
actions may be

high dimensional

ωt+1at

Observations may not
provide full knowledge

of the underlying
state : ωt 6= st

Environment
st → st+1

ωt+1

Environment
st → st+1

Experience may be constrained
(e.g., not access to an accu-

rate simulator or limited data)

8/40



Objective

From experience in an environment,
an artificial agent

should be able to learn a sequential decision making task
in order to achieve goals.

Agent

Environment
st → st+1

at ωt+1 rt

transitions
are usually
stochastic

Environment
st → st+1

Observations and
actions may be

high dimensional

ωt+1at

Observations may not
provide full knowledge

of the underlying
state : ωt 6= st

Environment
st → st+1

ωt+1

Environment
st → st+1

Experience may be constrained
(e.g., not access to an accu-

rate simulator or limited data)

8/40



Objective

From experience in an environment,
an artificial agent

should be able to learn a sequential decision making task
in order to achieve goals.

Agent

Environment
st → st+1

at ωt+1 rt

transitions
are usually
stochastic

Environment
st → st+1

Observations and
actions may be

high dimensional

ωt+1at

Observations may not
provide full knowledge

of the underlying
state : ωt 6= st

Environment
st → st+1

ωt+1

Environment
st → st+1

Experience may be constrained
(e.g., not access to an accu-

rate simulator or limited data)

8/40



Objective

From experience in an environment,
an artificial agent

should be able to learn a sequential decision making task
in order to achieve goals.

Agent

Environment
st → st+1

at ωt+1 rt

transitions
are usually
stochastic

Environment
st → st+1

Observations and
actions may be

high dimensional

ωt+1at

Observations may not
provide full knowledge

of the underlying
state : ωt 6= st

Environment
st → st+1

ωt+1

Environment
st → st+1

Experience may be constrained
(e.g., not access to an accu-

rate simulator or limited data)

8/40



Objective

From experience in an environment,
an artificial agent

should be able to learn a sequential decision making task
in order to achieve goals.

Agent

Environment
st → st+1

at ωt+1 rt

transitions
are usually
stochastic

Environment
st → st+1

Observations and
actions may be

high dimensional

ωt+1at

Observations may not
provide full knowledge

of the underlying
state : ωt 6= st

Environment
st → st+1

ωt+1

Environment
st → st+1

Experience may be constrained
(e.g., not access to an accu-

rate simulator or limited data)

8/40



Introduction

I Experience is gathered in the form of sequences of
observations ω ∈ Ω, actions a ∈ A and rewards r ∈ R :

ω0, a0, r0, ..., at−1, rt−1, ωt

I In a fully observable environment, the state of the system
st ∈ S is available to the agent.

st = ωt

9/40



Definition of an MDP
An MDP is a 5-tuple (S,A,T ,R, γ) where :

I S is a finite set of states {1, . . . ,NS},
I A is a finite set of actions {1, . . . ,NA},
I T : S ×A× S → [0, 1] is the transition function (set of conditional

transition probabilities between states),

I R : S ×A× S → R is the reward function, where R is a continuous set
of possible rewards in a range Rmax ∈ R+ (e.g., [0,Rmax ]),

I γ ∈ [0, 1) is the discount factor.

s0 s1 s2

a0 a1r0 r1

. . .
Policy

Reward
function

R(s0, a0, s1)

Transition
function

T (s0, a0, s1)

Policy
Reward
function

R(s1, a1, s2)

Transition
function

T (s1, a1, s2)

10/40



Performance evaluation

In an MDP (S,A,T ,R, γ), the expected return V π(s) : S → R (π ∈ Π,
e.g., S → A) is defined such that

V π(s) = E
[∑∞

k=0
γk rt+k | st = s, π

]
, (1)

with γ ∈ [0, 1).

From the definition of the expected return, the optimal expected return
can be defined as

V ∗(s) = max
π∈Π

V π(s). (2)

and the optimal policy can be defined as :

π∗(s) = argmax
π∈Π

V π(s). (3)

11/40



Overview of deep RL
In general, an RL agent may include one or more of the following
components :

I a representation of a value function that provides a prediction
of how good is each state or each couple state/action,

I a direct representation of the policy π(s) or π(s, a), or

I a model of the environment in conjunction with a planning
algorithm.

Experience

Value/policyModel

Acting
Model

learning

Planning

Modef-free
RL

Model-based
RL

Value-based
RL

Policy-based
RL

Deep learning has brought its generalization capabilities to RL.
12/40



Techniques used in deep
reinforcement learning

13/40



Value-based methods

14/40



Value based methods : Q-learning

In addition to the V-value function, the Q-value function
Qπ(s, a) : S × A→ R is defined as follows :

Qπ(s, a) = E
[∑∞

k=0
γk rt+k | st = s, at = a, π

]
. (4)

The particularity of the Q-value function as compared to the
V-value function is that the optimal policy can be obtained directly
from Q∗(s, a) :

π∗(s) = argmax
a∈A

Q∗(s, a). (5)

15/40



Value-based method : Q-learning with one entry for every
state-action pair

In order to learn the optimal Q-value function, the Q-learning
algorithm makes use of the Bellman equation for the Q-value
function whose unique solution is Q∗(s, a) :

Q∗(s, a) = (BQ∗)(s, a), (6)

where B is the Bellman operator mapping any function
K : S ×A → R into another function S ×A → R and is defined
as follows :

(BK )(s, a) =
∑
s′∈S

T (s, a, s ′)

(
R(s, a, s ′) + γ max

a′∈A
K (s ′, a′)

)
. (7)

16/40



Value-based method : Q-learning (dynamic programming)
Value function

V = maxa Q(s, a)

Resulting policy

π = argmaxaQ(s, a)

R=1

R=1

R=1

0 0

0 0 0

0 0 0

0 0.9

0 0 0.9

0 0 0

0.81 0.9

0 0.81 0.9

0 0 0.81

i=0

i=1

i=2

Figure – Grid-world MDP with γ = 0.9

17/40



Value-based method : Q-learning

In the tabular case :

18/40



Q-learning with function approximator

To deal with continuous state and/or action space, we can
represent value function with function approximators and
parameters θ :

Q(s, a; θ) ≈ Q(s, a)

The parameters θ are updated such that :

θ := θ + α
d

dθ

(
Q(s, a; θ)− Y Q

k

)2

with
Y Q
k = r + γ max

a′∈A
Q(s ′, a′; θk).

With deep learning, the update usually uses a mini-batch (e.g., 32
elements) of tuples < s, a, r , s ′ >.

19/40



DQN algorithm
For Deep Q-Learning, we can represent value function by deep
Q-network with weights θ (instabilities !). In the DQN algorithm :
I Replay memory
I Target network

Update
Q(s, a; θk)

Every C :
θ−k := θk

r1, . . . , rNreplay

s1, . . . , sNreplay
, a1, . . . , aNreplay

s1+1, . . . , sNreplay+1

rt + γmax
a′∈A

(Q(st+1, a
′; θ−k ))

Policy

Environment

Figure – Sketch of the DQN algorithm. Q(s, a; θk) is initialized to random
values (close to 0) everywhere on its domain and the replay memory is initially
empty ; the target Q-network parameters θ−k are only updated every C
iterations with the Q-network parameters θk and are held fixed between
updates ; the update uses a mini-batch (e.g., 32 elements) of tuples
< s, a, r , s ′ > taken randomly in the replay memory.

20/40



Policy-based methods

21/40



Policy-based methods

I Parametrized policies Π = {πw : w ∈ Rn}.
I Policy search or gradient ascent on V πw to improve the policy.

I They are able to work with continuous action spaces. This is
particularly interesting in applications such as robotics where
forces and torques can take a continuum of values.

I They can represent stochastic policies : π : S ×A → P. It is
useful for building policies that can explicitly explore, and this
is also useful in multi-agent systems (e.g., poker) where the
Nash equilibrium is a stochastic policy.

22/40



Model-based methods

23/40



Model-based methods

The respective strengths of the model-free versus model-based
approaches depend on different factors.

I If the agent does not have access to a generative model of the
environment, the learned model will have some inaccuracies.

I Second, a model-based approach requires working in
conjunction with a planning algorithm, which is often
computationally demanding.

I Third, for some tasks, the model of the environment may be
learned more efficiently due to the particular structure of the
task.

24/40



Model-based methods

V ∗(s) = Q∗(s, a = π∗) = Eπ∗ [r0 + γr1 + · · · ]
st

st+1

st+2

at , rt

at+1, rt+1

π∗,
r = r0

π∗,
r = r1

π∗

Figure – Illustration of model-based.

25/40



Overview

Policies
Exploration/Exploitation

(e.g., via ε-greedy)

Controllers
• train/validation
and test phases
• hyper-parameters
management

Replay memory

Learning
algorithms

Function
Approximators

ENVIRONMENT

AGENT

Implementation : https ://github.com/VinF/deer

26/40



Formalization

The learning algorithm can be seen as a mapping a dataset Ds into
a policy πDs (independently of whether the policy comes from a
model-based or a model-free approach) :

Ds → πDs .

In an MDP, the suboptimality of the expected return can be
decomposed as follows :

E
Ds∼Ds

[V π∗(s)− V πDs (s)] = (V π∗(s)− V πDs,∞ (s))︸ ︷︷ ︸
asymptotic bias

+ E
Ds∼Ds

[(V πDs,∞ (s)− V πDs (s))︸ ︷︷ ︸
error due to finite size of the dataset Ds

referred to as overfitting

]. (8)

27/40



How to obtain the best policy ?

We can optimize the bias-overfitting tradeoff thanks to the
following elements :

I the state representation,

I the objective function (e.g., reward shaping, tuning the
training discount factor) and

I the learning algorithm (type of function approximator and
model-free vs model-based).

And of course, if possible :

I improve the dataset (exploration/exploitation dilemma in an
online setting)

28/40



Combining model-based and
model-free via abstract

representations

29/40



In cognitive science, there is a dichotomy between two modes of
thoughts (D. Kahneman. (2011). Thinking, Fast and Slow) :

I a ”System 1” that is fast and instinctive and

I a ”System 2” that is slower and more logical.

Figure – System 1 Figure – System 2

In deep reinforcement, a similar dichotomy can be observed when
we consider the model-free and the model-based approaches.

30/40



Combining model-based and model-free

Learning everything through one abstract representation has the
following advantages :

I it ensures that the features inferred in the abstract state
provide good generalization ;

I it enables computationally efficient planning ;

I it facilitates interpretation of the decisions taken by the agent ;

I it allows developing new exploration strategies ;

31/40



Combined Reinforcement via Abstract Representations
(CRAR)

s0 s1 s2environment environment

a0 a1

encoder encoder encoder

model-based model-based

transition
model

transition
model

reward
model

reward
model

abstract
state

abstract
state

abstract
state

r0 r1

model-
free

model-
free

model-
free

Q Q Q

. . .

Figure – Illustration of the integration of model-based and model-free
RL in the CRAR architecture, with a low-dimensional abstract state over
which transitions and rewards are modeled.

The value function and the model are trained using off-policy data
in the form of tuples (s, a, r , γ, s ′) via the abstract representation.

32/40



Another important challenge : transfer learning

Figure – Transfer learning between different renderings. Picture from
”Playing for Data : Ground Truth from Computer Games”, Richter, S.
and Vineet, V., et al

33/40



Transfer learning with the CRAR agent

s0 s1 s2environment environment

a0 a1

encoder encoder encoder

model-based model-based

transition
model

transition
model

reward
model

reward
model

abstract
state

abstract
state

abstract
state

r0 r1

model-
free

model-
free

model-
free

Q Q Q

. . .

Figure – Illustration of the integration of model-based and model-free
RL in the CRAR architecture, with a low-dimensional abstract state over
which transitions and rewards are modeled.

34/40



Discussion of another parallel with
neurosciences

35/40



How to discount deep RL

36/40



Motivations

Effect of the discount factor in an online setting.

I Empirical studies of cognitive mechanisms in delay of
gratification : The capacity to wait longer for the preferred
rewards seems to develop markedly only at about ages 3-4
(“marshmallow experiment”).

37/40



Increasing discount factor (using the DQN aglorithm)

Figure – Illustration for the game q-bert of a discount factor γ held fixed on
the right and an adaptive discount factor on the right.

38/40



Further ressources

I Sutton, Richard S., and Andrew G. Barto. Reinforcement
learning : An introduction. Vol. 1. No. 1. Cambridge : MIT
press, 1998.

I RL Course by David Silver on Youtube :
https ://www.youtube.com/watch ?v=2pWv7GOvuf0

39/40



Conclusions

40/40



Summary of the talk

I Introduction to reinforcement learning and deep reinforcement
learning

I Why combining model-free and model-based approaches

I Brief discussion on some relations to neuroscience

41/40



Questions ?


	Motivation for reinforcement learning
	Techniques used in deep reinforcement learning
	Value-based methods
	Policy-based methods
	Model-based methods

	Combining model-based and model-free via abstract representations
	Discussion of another parallel with neurosciences
	How to discount deep RL

	Conclusions

